Evaluation of Chemical and Microbial Effects of Wastewater Infiltration Lagoons on Ground Water Quality – Butler County, Ohio

Chris Kenah, Michael Slattery, Linda Slattery, and Michael Eggert

Water Quality Characterization & Protection Section Ohio EPA, Division of Drinking and Ground Waters

Outline

- Overview of Situation
- Geologic Setting
- Sampling Approach
- Results of Study
 - Inorganic, Isotope, Microbiologic Samples
- Implications of Study
 - Public Health
 - Ground Water Rule

Situation - Discharge to Ground Water

- Partially treated wastewater discharged to unlined lagoons (since late 1960's)
- Lagoons overlie the Great Miami River Aquifer
- Infiltration is a discharge to ground water
- Does impact to ground water quality from infiltration pose a public health threat?

Sampling Plan – Evaluate GW Quality

- Identify flow direction
- Locate Geoprobe borings within and upgradient of plume
- Install GW monitoring wells at top of GW table for quarterly samples – 1 upgradient and 2 downgradient
- Sample borings and monitoring wells for inorganic, microbiological, isotopic, and pharmaceutical parameters

Inorganic Sample Results

- Water levels indicate consistent flow directions to the SSW
- Chloride and TDS concentrations delineate distinct wastewater and storm water plumes, consistent with monitoring well data
- Ammonia is presence in core of plume
 - Reducing conditions in plume core within oxidized ground water

Isotope Sample Results

- Stable Isotopes of nitrogen and oxygen in nitrate:
 - Lagoon isotopes exhibit sewage signature;
 - Snow pack is most depleted;
 - Monitoring wells are variable but plot between sewage source and snow pack;
 - Boring samples generally plot in soil nitrogen field.
- Suggests mixing of lagoon infiltrate with ground water

Microbiologic Results

- GW samples produced non-detect to low counts of pathogens compared to lagoons
- Most pathogen detections were less than 10 CFU/100 mL
- Elevated microbiological results do not all correlate with core of plume

Microbiologic Indicators - Total Coliforms (Colilert Method, colonies/100mL)

Sample		October-	August-	January-	April-	July-	October-
Location		04	05	06	06	06	06
PWS	C1	<1		<1	<1	<1	<1
Storm water		>2419					
Upgradient	MW1		<1	<1	<1	<1	<1
	FE	>2419	198600				
Lagoons	L2		198280	19863	5500	579	>2500*
	L3		198628				
Downgradient	MW2		<1	5	<1	<1	387
	MW3		3	<1	<1	<1	<1

⁻⁻ Indicates no sample collected

^{*} Sample 2/3 sediment - results inaccurate

Microbiologic Indicators - *E-coli* #/100mL

Sample Location		October- 04	August- 05	January- 06	April- 06	July-06	October- 06
PWS	C1	<1		<1	<1	<1	<1
Storm water		228					
Upgradient	MW1			<1	<1	<1	<1
	FE	>2419	27230				
Lagoons	L2		30900	4611	630	62	550*
	L3		32550				
Downgradient	MW2			<1	<1	<1	4
_	MW3			<1	<1	<1	<1

⁻⁻ Indicates no sample collected ----- Sample collected, no results

^{*} Sample 2/3 sediment; results inaccurate

Pharmaceutical Results

- GW samples detected sulfamethoxazole and carbamazapine in boring and monitoring wells;
- Distribution of detections consistent with the plume geometry;
- Within single boring, concentration of pharmaceuticals decrease with depth.

Catalina MHP Study Conclusions

- Wastewater plume clearly identified, GW quality impacts do not exceed inorganic MCLs;
 - Nitrate below 10 mg/L (as high as 6.0 but mostly <5.0)
- Non-detect to low counts of pathogen indicators indicates significant filtration, not perfect;
 - Pathogens below 10 cfu/100mL
- Stable isotopes in nitrate and pharmaceutical parameters consistent with infiltrate mixing with local ground water.

Study Implications

- Study results can be used to help evaluate the need for developing statewide GW discharge standards.
- Catalina MHP results document that buried valley aquifers provide significant filtration of pathogens – significantly greater than fracture controlled aquifers;
- Results allow state to focus GW Rule implementation on PWSs in fractured bedrock aquifers with thin, overlying glacial drift.

Acknowledgements

Ohio EPA, DSW, DERR, DDAGW, CO & SWDO:

 Rich Bendula, Steve Lowry, Allison Reed, Greg Brown, Ned Sarle, Diana Zimmerman, Maryanne Mahr, Karl Reinbold, Jeff Wander, Kelvin Jones, Gavin Armstrong, Scott Shane

U.S. Geological Survey Staff:

Ed Furlong, Dana Kolpin, Bruce Anderson

U.S. EPA Staff, Office of Research and Development:

- Susan Glassmeyer, Cliff Johnson, Marc Mills